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ABSTRACT 

PREDICTING PEAK WIND GUSTS DURING SPECIFIC WEATHER TYPES WITH THE 

METEOROLOGICALLY STRATIFIED GUST FACTOR MODEL 

by 

Teresa Turner 

 

The University of Wisconsin-Milwaukee, 2020  

Under the Supervision of Professor Jon Kahl 

 

Peak wind gusts were estimated by the meteorologically stratified gust factor model at 

Milwaukee, WI (KMKE) for eight different weather types during 2010-2017. The gust factor 

model couples gust factors with wind speed and direction forecast guidance to produce peak gust 

forecasts. The model evaluated used two model output statistics (MOS) guidance products at lags 

ranging from 6-24 hr and was compared with peak gust forecasts provided by the Localized 

Aviation MOS Program (LAMP) as well as observed gusts reported by automated surface 

observing systems (ASOS). 

Compared with climatology, the gust factor model showed skill when coupled with MOS 

in predicting peak gusts during most of the eight weather types at the analyzed lags of 06 hr, 12 

hr, 18 hr, and 24 hr. The MOS products results performed similarly for each of the weather 

types. The gust factor model does not show skill during convective weather situations, in part 

because during these conditions the provided MOS wind speed and direction forecasts are less 

accurate. This is important for operational wind forecasting, because this method can be used for 

many non-convective gust-producing weather situations.  

 

 



www.manaraa.com

iii 
 

TABLE OF CONTENTS 

 

List of Figures ............................................................................................................................... iv 

 

List of Tables ..................................................................................................................................v 

 

List of Abbreviations ................................................................................................................... vi 

  

1   Introduction ...............................................................................................................................1 

1.1 Motivation ......................................................................................................................1 

1.2 Previous Work ...............................................................................................................2 

1.3 The Project .....................................................................................................................3 

 

2   Data ............................................................................................................................................4 

2.1 Observed Wind and Gust Data ......................................................................................4 

2.2 Meteorologically Stratified Gust Factors .......................................................................5 

2.3 MOS Forecasts ...............................................................................................................6 

2.4 LAMP Forecasts ............................................................................................................6 

2.5 Weather Data Archive ....................................................................................................7 

 
3   Methods ......................................................................................................................................7 

3.1 Weather Type Identification ..........................................................................................7 

3.2 Model Application and Verification ..............................................................................9 

3.3 Statistical Significance Testing ....................................................................................10 

 
4   Results ......................................................................................................................................11 

4.1 No-Skill Models Performance .....................................................................................11 

4.2 GF and LAMP Models Performance ...........................................................................13 

 

5   Conclusions ..............................................................................................................................16 

 

 

6   References ................................................................................................................................31 

 

 

 

 

 

 

 



www.manaraa.com

iv 
 

LIST OF FIGURES 

 

Figure 1. KMKE Gust Web ...........................................................................................................25 

 

Figure 2. KMKE Gust Climatology ...............................................................................................26 

 

Figure 3. Persistence and Climatology MAEs ...............................................................................27 

 

Figure 4. MAEs for all Models and Weather Types ......................................................................28 

 

Figure 5. Gust forecast bias vs. wind speed forecast bias for convection .....................................29 

 

Figure 6. Gust forecast bias as a function of wind speed and wind direction for convection .......30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

v 
 

LIST OF TABLES 

 

Table 1. Email Response Offices ...................................................................................................19 

 

Table 2. Most Common Survey Answers ......................................................................................20 

 

Table 3. Occurrences and Frequency of Weather Types ...............................................................20 

 

Table 4. Number of Occurrences for Windy Snow .......................................................................21 

 

Table 5. Number of Occurrences for Less Windy Snow ...............................................................21 

 

Table 6. Number of Occurrences for Convective with Thunder ...................................................21 

 

Table 7. Number of Occurrences for Convective with Thunder and Rain ....................................22 

 

Table 8. Number of Occurrences for Non-Convective Rain .........................................................22 

 

Table 9. Number of Occurrences for Night, Cloudy, and Dry ......................................................22 

 

Table 10. Number of Occurrences for Night, Clear, and Dry ........................................................23 

 

Table 11. Number of Occurrences for High Pressure ....................................................................23 

 

Table 12. Details of Models Used..................................................................................................23 

 

Table 13. Mean Biases of Models for Each Weather Type ...........................................................24 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

vi 
 

LIST OF ABBREVIATIONS 

 

ASOS   Automated Surface Observing System 

 

GF   Gust Factor  

 

MAE   Mean Absolute Error 

 

MOS   Model Output Statistics  

 

NWS   National Weather Service 

 

PProg   Perfect Prognosis 

 

GFS   Global Forecast System 

 

NAM   North American Mesoscale 

 

LAMP  Localized Aviation MOS Program 

 

 

 

 

 

 

 



www.manaraa.com

1 
 

1     Introduction 

Wind gusts are difficult to forecast. Gusts are a perturbation on the mean wind and are 

such a small-scale phenomenon that they are problematic to measure; there is simply not enough 

data. Gusts originate from the atmosphere above where the winds are stronger, so knowledge of 

the conditions in this part of the atmosphere is critical for forecasting gusts. These data are only 

routinely collected every 12 hours with radiosondes, however, so the knowledge is not always 

current. 

In addition to limited upper atmospheric condition data, the U.S. National Weather 

Service Automated Surface Observing System (ASOS) criteria for reporting wind and gusts are 

constricting. For ASOS hourly reports, the reported wind speed is the two-minute average of the 

three-second wind measured during minutes 51 and 52 of the hour, and the gust observation is 

the highest three-second average wind recorded during the 10-minute period from minutes 43 to 

52 of each hour (Harris & Kahl 2017). The criteria which must be satisfied for gusts to be 

reported are as follows: the wind must exceed two kts, the difference between the gust and wind 

must be greater than or equal to three kts, and the gust must exceed the minimum three-second 

wind speed by 10 kts (Harris & Kahl 2017). With these limiting criteria in place, most gusts are 

neither reported with the hourly data nor archived, thus creating verification issues. Rather than 

hourly resolution data, proper verification of wind and gust forecasts thus requires analysis of 

one-minute data. 

1.1 Motivation 

Developing an accurate method to forecast peak gusts is important. Wind gusts are a 

hazard to aviation and marine activities and pose a threat to the integrity of forests, bridges, tall 

buildings, powerlines and other electricity networks, personal property, semi-truck drivers, and 



www.manaraa.com

2 
 

the workers and equipment at construction sites (Harris & Kahl 2017). Sudden strong wind gusts 

during an otherwise calm day, because they are so unexpected, can sometimes be more 

dangerous than wind gusts that occur during severe storms or blizzards (Ashley & Black 2008). 

According to Della-Marta et al. (2010), wind events are the leading cause of property damage, 

which further motivates the desire for an accurate gust forecasting method. More so, the force 

exerted on an object by the wind is proportional to the square of the wind speed (Letson et al. 

2017). If the hourly peak gust could be accurately forecasted, then measures could be taken to 

ensure safety and to design structures to withstand those gusts. Underestimates of gusts could 

lead to structural failures and overestimates could lead to unnecessary design expenses.  

1.2 Previous Work 

Previous attempts to forecast wind gusts include physical, statistical, and combined 

physical and statistical methods.  

One physical method includes the estimation of the wind speed at the top of the planetary 

boundary layer with the assumption that the momentum can be transferred downward, but this 

method tends to overestimate gusts (Hart & Forbes 1999). Another physical method is based off 

of turbulence parameterization and the reasoning that gusts represent the amount of vertical 

mixing (Schreur & Geertsema 2008). A third method utilizes turbulent kinetic energy to make an 

estimation of the altitude at which the momentum is transferred down to the surface. This 

method also has the tendency to overestimate gusts (Brasseur 2001). 

The model output statistics (MOS) model is a statistical method that uses regression-

based techniques to downscale numerical weather prediction forecasts to particular locations. As 

predictor variables in its wind gust equations, this technique uses wind speeds at various heights, 

relative humidity, relative vorticity, turbulence, and the ratio between the 925 mb and 10 m wind 
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speeds. While useful in short-term forecasting, the MOS approach is not reliable when it comes 

to making forecasts by 72 hours out (Rudack 2006). Most MOS products do not forecast gusts, 

however.  

Another method is the Gust Factor (GF) model, an empirically derived statistical 

technique that is simple to use. The GF, defined by Sherlock in 1952, is the ratio of the observed 

wind gust to the observed wind speed. A known GF can thus be multiplied by the forecast wind 

speed to get the forecast gust. GF models are sensitive to different meteorological conditions, so 

the GF model has recently been climatologically stratified to consider details such as wind speed, 

wind direction, season, month, time of day, surface roughness, and atmospheric stability to try 

and produce the most accurate GF for each combination (Harris & Kahl 2017). Recently 

demonstrated meteorologically stratified GFs have shown potential in forecasting gusts.  

More in-depth research has recently been done on forecasting peak gusts using 

meteorologically stratified GFs. Kahl (2020) tested the performance of the meteorologically 

stratified GF model at 15 sites around the United States during 2010-2017. According to this 

work, at 11 of the 15 sites the GF model showed skill in predicting peak gusts out to lags 

(forecast projections) of 72 hours, which indicates that this method can be used for forecasting at 

any location where meteorologically stratified GFs have been determined. However, the question 

remains open as to how well the model performs during different types of gust-producing 

weather phenomena (Kahl 2020). This is the question that this project endeavors to answer.   

1.3 The Project 

The meteorologically stratified GF model has demonstrated potential to forecast peak 

gusts when observed rather than forecast wind speed and direction is used (Harris & Kahl 2017) 

and has been successfully tested using wind forecast data at several sites (Kahl 2020).  To 
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examine the model’s ability to predict peak gusts during different types of weather events, the 

following research questions are addressed. How well do the no-skill models, climatology and 

persistence, perform for different weather types? How well does the GF model predict peak wind 

gusts for different weather types when the wind speed and wind direction forecasts are perfect 

[the perfect prognosis (PProg) model]? How well does the GF model work when coupled with 

MOS wind forecasts? What is the effect of lag time on the GF model performance? What is the 

sensitivity of GF model performance on the types of MOS product? Finally, how well does the 

GF model perform compared to the peak wind gust forecasts provided by the Localized Aviation 

MOS Program (LAMP) system, one of the few MOS products offering wind gust guidance? 

Milwaukee, WI (KMKE, latitude: 43.04°N, longitude: 87.91°W, altitude: 204 m msl) is 

the location from where wind data has been gathered and on which these analyses will be 

performed. Several weather types that are known to be associated with gusty winds will be 

considered to test the GF forecast skill coupled with the Global Forecast System (GFS) MOS and 

North American Mesoscale model (NAM) MOS at the lags of 06-h, 12-h, 18-h, and 24-h.  

The upcoming chapters present the sources and methods used to collect the data used for 

analysis, the specification of the particular weather types and their criteria for identification, the 

application of these criteria to the gathered data and statistics performed on these data, a 

discussion of the results found for each weather type, conclusions, and suggestions for further 

research.  

2 Data 

2.1 Observed Wind and Gust Data 

The wind dataset that was obtained for this project contains one-minute resolution ASOS 

wind and gust data for the 2010-2017 period at KMKE.  There were roughly 4,000,000 
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observations during this time period. The publicly available data set (data set 6405, available at 

ftp.ncdc.noaa.gov/pub/data/asos-onemin) lacked sufficient quality control measures, so the wind 

and gust records were put through several other quality checks. The following quality control 

methods were used (Kahl 2020): the data were filtered for records that were repeated, out of 

chronological order, or not in a useable form, and then checks were made to exclude records that 

were illogical (e.g. negative wind speeds) or that lacked necessary data fields. The final quality 

control measure eliminated erroneously large winds and gusts. The surviving one-minute data 

were used to create an hourly dataset, with each hour comprised of at least 54 quality-controlled, 

one-minute records.  This reduced the data set to 66,823 hourly records, 95.1% of the possible 

reporting hours during 2010-2017. The resulting dataset contained the year, month, day, hour, 

ASOS recorded mean wind speed, mean wind direction, peak wind gust for each hour, and gust 

factor (𝐺𝐹 =
𝑝𝑒𝑎𝑘 𝑔𝑢𝑠𝑡

𝑚𝑒𝑎𝑛 𝑤𝑖𝑛𝑑 𝑠𝑝𝑒𝑒𝑑
).  This dataset will be referred to as the ASOS workbook.  

2.2 Meteorologically Stratified Gust Factors 

Harris & Kahl (2017) showed that the best performance in GF models was given by 

double stratification of gust factors by wind speed (0-5 kt, 5-10 kt, 10-15 kt, and >15 kt) and 

wind direction (30° bins). Figure 1 displays the stratified gust factors for KMKE in the form of a 

“gust web” diagram. The gust web shows that at KMKE, stronger winds above 10 kt (the 

outermost two rings) occur more frequently with wind directions from a broad sector extending 

from the south (180°) clockwise to the NNE (30°). The GFs associated with winds over 15 kt 

(the outermost ring) are largest from the in the WSW sector (GF=1.76) and smallest in the ENE 

sector (GF=1.50). This difference, due to the differences in surface roughness between the 

developed land to the west and Lake Michigan to the east, results in peak gusts associated with 

WSW winds being, on average, 19% stronger than those associated with NNE winds.   



www.manaraa.com

6 
 

2.3 MOS Forecasts  

MOS is a product that improves forecast model output via post-processing (Glahn & 

Lowry 1972). Wind speed and direction guidance from the GFS and NAM MOS text bulletins 

were obtained from the Iowa State University server (https://mesonet.agron.iastate.edu/mos/). 

The NAM MOS forecasts were initialized every 12 hours and the GFS MOS forecasts every 6 

hours, and both products provide 6-60 hr forecasts at 3-hour intervals, as well as 66 hr and 72 hr 

forecasts. Only the lags out to 24 hr were utilized for the project. These data are used here with 

the intention of evaluating the performance of the GF model rather than evaluating the specific 

MOS products. In addition to the MOS forecasts, the GF model was also coupled with the no-

skill climatology and persistence wind forecasts. Persistence forecasts were evaluated for lags 1-

6 hr and climatology forecasts are stratified by hour and season. Figure 2 shows the KMKE 

hourly- and seasonally-stratified gust climatology for 2010-2017.  

2.4 LAMP Forecasts 

One operational method that is currently being used in gust forecasting is the LAMP 

system. LAMP is a combination of observations and GFS MOS forecasts (Glahn et al. 2017) and 

is operated by the National Weather Service; its forecasts are updated hourly (Ghirardelli & 

Glahn 2010). 

LAMP is one of only a few MOS forecasting products that provides peak wind gust 

forecasts and these gusts are included in the LAMP bulletins when the gust forecast matches the 

ASOS gust reporting requirements (Nadolski 1998). LAMP forecasts are initialized every six 

hours and have hourly lags from one to 25 hours (Rudack & Ghirardelli 2010).  It is interesting 

to note that LAMP forecasts predict the strongest wind gust during minutes 43–52 of the hour 

previous to the forecast hour (Ghirardelli 2005), while the GF model predicts the peak gust 
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during the entire forecast hour (Kahl 2020).  The LAMP forecasts are thus not entirely 

comparable to the GF model forecasts.  They are nevertheless included here due to the possibility 

that some operational weather forecasters interpret LAMP gust forecasts as representing the peak 

gust during the entire forecast hour.   

2.5 Weather Data Archive 

The weather data archive used to identify the hours needed for each weather type being 

evaluated for the 2010-2017 time period at KMKE was retrieved from NOAA’s National Centers 

for Environmental Information Local Climatological Data page (https://www.ncdc.noaa.gov/cdo-

web/datatools/lcd). This data archive in the form of an Excel file included information such as 

hourly sea level pressure, weather type present, sky coverage, wind speed (in mph), and sunrise 

and sunset times. This dataset will be referred to as the Weather Data workbook.  

3 Methods 

3.1 Weather Type Identification 

In order to determine which types of weather events to focus on for this project, an email 

survey was sent out to a group of professional, operational meteorologists. The survey contained 

a similar variation to the following two questions: 

1. Under which situation(s) is gust forecasting the most difficult? 

2. Under which situation(s) is gust forecasting the most important? 

A total of 22 individuals or National Weather Service (NWS) offices were contacted and 

14 people responded, often with the answers from multiple forecasters at the particular NWS 

office, a 64% response rate. Table 1 lists the locations from which the replies came. The range of 

answers was extensive, so Table 2 compiles the most frequent answers for each of the survey 

questions.  
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The responses to the survey questions helped inform the selection of weather types to 

include in the present analysis; some weather types, like high pressure, were added after the 

survey weather types were chosen since they are also conditions known to produce gusty winds. 

The weather types were selected as follows with the specified reasons: 

• snowy conditions with winds greater than 17 kts to analyze winter storms and blizzard 

conditions. A wind speed of 17 kts was chosen because one qualification of a blizzard is a 

minimum sustained wind speed of 30.4 kts, but since winter storms were also being analyzed 

here, a slower wind was chosen that was still considered windy.  

• snowy conditions with winds less than 17 kts as a comparison to the windier snowy 

conditions,  

• convective systems to analyze low-pressure systems and thunderstorms 

• non-convective rain to analyze gusts during rain showers, 

• dry (no precipitation) nighttime conditions with clouds (specified reason in next weather 

type), 

• dry nighttime conditions with no sky cover to see how well gusts are forecast during different 

nighttime mixing conditions, and  

• high pressure systems, because fair weather that accompanies strong high pressure systems 

sometimes involves high wind gusts from converging winds above. 

The Weather Data workbook was utilized to identify the dates and times during which the 

different weather types occurred. The selection criteria to identify which hours would be pulled 

from the weather data workbook for GF model analysis were the following: 

• Windy snow: snowing with winds greater than or equal to 17 kts, 

• Less windy snow: snowing with winds less than 17 kts, 
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• Convective systems: the weather condition “TS” (thunder) is present; this was done twice, 

the second time including both thunder and rain, 

• Non-convective rain: rain is present, but no thunder is present, 

• Overcast nighttime with no precipitation: night, no type of precipitation is present, and sky 

cover is “OVC” (overcast), 

• Clear nighttime with no precipitation: night, no type of precipitation is present, and sky cover 

is “CLR” (clear), 

• High Pressure: sea level pressure is greater than or equal to 1025 hPa. 

After the hours for each weather type were identified, checked for accuracy and duplicate 

hours were deleted, these data were matched and merged with the corresponding ASOS wind 

and gust data and MOS data in the ASOS workbook to create a comprehensive dataset, which 

will be referred to as the Combined workbook. Table 3 shows the number of occurrences for 

each weather type. High pressure and dry nighttime conditions with clouds were the most 

abundant weather types, while windy snow and the convective situations occurred much less 

frequently. 

Tables 4-11 show occurrence frequencies and wind/gust characteristics for each weather 

type. Windy snow is the least common weather type with only 192 occurrences, while high 

pressure is the most common with 8816 occurrences. Nighttime with clear and dry conditions 

had the smallest mean wind speed at 6 kt and smallest mean peak wind gust at 10.4 kt; windy 

snow had the highest mean wind speed at 20.2 kt and highest mean peak wind gust at 32.6 kt.  

3.2 Model application and verification 

The GF model for predicting peak wind gusts is 

𝑔𝑢𝑠𝑡𝑓𝑐𝑠𝑡 = 𝐺𝐹 ∗ 𝑤𝑠𝑝𝑑𝑓𝑐𝑠𝑡    (1) 
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where 𝑔𝑢𝑠𝑡𝑓𝑐𝑠𝑡 is the forecasted peak gust, 𝑤𝑠𝑝𝑑𝑓𝑐𝑠𝑡 is the forecasted wind speed for that hour, 

and 𝐺𝐹 is the gust factor.  As described by Harris and Kahl (2017) and Kahl (2020), the GF is a 

site-specific, climatological representation of gustiness that is dependent on both wind speed and 

direction.   In this project the wind speed and wind direction used to identify the appropriate gust 

factor were provided by the MOS forecasts. (The wind speed forecast wspdfcst is also used 

directly in Eq. 1.) Peak gust forecasts for KMKE at lead times ranging from 6-24 hr were 

calculated using wind speed and direction guidance provided by the GFS MOS and NAM MOS 

coupled with the meteorologically stratified GFs from the ASOS workbook.  

Bias (𝑔𝑢𝑠𝑡𝑓𝑐𝑠𝑡 − 𝑔𝑢𝑠𝑡𝑜𝑏𝑠), where 𝑔𝑢𝑠𝑡𝑜𝑏𝑠 is the hourly peak wind gust used for 

verification determined from the ASOS workbook observed data, and absolute error (|bias|) are 

two verification metrics that were used to evaluate model performance.  These metrics were 

applied to the GF model, the peak gust forecasts produced by LAMP, and PProg model forecasts 

(using observed rather than forecast wind speed and direction in equation 1). Forecast 

verification was performed for all available hours during which the specified weather types 

occurred. Persistence (lags 1-6 hr only) and climatology, the no-skill models, were also verified. 

Table 12 provides the details for each model type used. Using the Combined workbook, the GF 

and LAMP models were evaluated using forecasts at lags of 06 hr, 12 hr, 18 hr, and 24 hr for this 

project.   

3.3 Statistical Significance Testing  

Statistical significance testing was performed on selected pairs of models using absolute 

error distributions via the sign test (Mendenhall et al. 1990). Differences were considered 

statistically significant when the null hypothesis, that there is no difference between the two 

distributions, was rejected at the 5% confidence level.  
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4 Results 

4.1 No-skill models performance 

How well do the no-skill models, climatology and persistence, forecasts perform for each 

weather type? Climatology and persistence forecasts are the no-skill models against which the 

GF models coupled with GFS and NAM MOS wind forecasts, and the LAMP model will be 

compared. These no-skill forecasts provide the benchmark against which the GF model must 

outperform in order to be considered skillful.  

Persistence is a legitimate no-skill model for short-term lag times, but it is not a model 

that can be easily utilized by forecasters since the forecasts require the archival of gust 

observations free of the reporting protocols that accompany the hourly ASOS dataset (Harris & 

Kahl 2017).  Figure 3 a-h shows the mean absolute errors (MAE) of the persistence and 

climatology forecasts of peak wind gusts for each weather type. Persistence forecasts, overall, 

performed better at shorter lags and decreased in accuracy with longer lags, and largely 

performed better than climatology. At shorter lags, persistence performed better for high pressure 

(Figure 3h) and nighttime with clear and dry conditions (Figure 3g); it performed considerably 

less well for both convective situations (Figures 3c and 3d).  

Considering the 06-h lag persistence forecasts, it is interesting to note that MAEs were 

larger (7-8 kt) for the windy snow, convective with thunder, and convective with thunder and 

rain weather types, and smaller (4-6 kt) for the other weather types.  This likely reflects the 

shorter lifetimes of the former weather types, and the longer lifetimes of the latter types.  

Climatology only outperformed persistence for the 06-h lag of nighttime with clear and 

dry conditions (Figure 3g) and did a particularly poor job for the conditions that produce higher 

gusts, like windy snow (Figure 3a) and the convective situations (Figures 3c and 3d). The windy 
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snow climatology MAEs were particularly large. This is likely because windy snow conditions 

only occur a small fraction of the time, so the climatology forecasts would not reflect these 

conditions. 

Comparing the KMKE results with the persistence and climatology MAEs reported in 

Figure 5a of Kahl (2020) for the 2010-2017 time period at Providence, RI (KPVD), several of 

the models for various weather conditions performed similarly. The climatology MAE for KPVD 

was just under 5 kt, and less windy snow, both nighttime conditions, and high pressure were 

close to 5 kt, but the other types all had larger climatology MAEs.  The only persistence models 

that performed worse than the MAEs reported in Kahl were both of the convective situations.    

How well does the GF model predict peak wind gusts for different weather types when the 

wind speed and wind direction forecasts are perfect using the perfect prognosis (PProg) model? A 

smaller PProg MAE indicates that, on average, the GF model should work well if the wind speed 

and wind direction forecasts are of high quality. A larger PProg MAE means that the GF model 

would be expected to perform poorly even if the wind speed and direction forecasts were accurate. 

The PProg displayed small MAEs (between 1 and 2 kt) for all weather types except the two 

convective situations, which had MAEs around 4 kt. The PProg errors for the convective weather 

types are likely higher because convection produces gusts differently than most other weather 

types, so the surface roughness implied in the directional dependence of the GFs is less relevant in 

forecasting convective gusts. Convective situations only make up a small percentage of 

occurrences at KMKE, according to Table 3, at 1%. The small MAEs for the other weather types 

indicate the GF model can have skill if the wind speed and wind direction forecasts are of high 

quality.  

4.2 GF and LAMP models performance 
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Figure 4 a-h shows each model’s MAE within each weather type at lags of 06, 12, 18, and 

24 hr.  

How well does the GF model work when coupled with MOS wind forecasts? The 06 hr lag 

results for GFS MOS will be considered for this question. The MAEs of the 06 hr GFS model for 

all weather types were less than the climatology MAEs, and statistical significance testing shows 

that these differences were significant at a 5% confidence level for all weather types except the 

two convective types. This indicates that the GF model coupled with GFS MOS wind forecasts 

has skill in predicting peak gusts at 06 hr lags for all weather types studied except during 

convective situations. The MAEs range from 2.6 kt for high pressure to 6.4 kt for convective with 

thunder and rain. High pressure had the smallest 06 hr GFS MOS MAE even though it had the 

highest number of occurrences, so the GF model has notable skill during high pressure conditions. 

Less windy snow and both nighttime conditions all had MAEs around 3 kt as well with large 

numbers of occurrences, ranging from 2402 to 7192 occurrences (Table 3). By way of comparison, 

the MAE for GFS 06 hr at KPVD in Kahl (2020) was also 3 kt. 

What is the effect of lag time on the GF model performance? The GFS MOS MAEs at the 

lags of 06 hr, 12 hr, 18 hr, and 24 hr will be compared for this question. According to Figure 4, the 

MAEs for each weather type do not have much variation as lag time increases from 06 to 24 hr. 

At these four lags, however, the GF model coupled with GFS MOS wind forecasts demonstrates 

skill, i.e., performs significantly better than climatology for all weather types except for the 

convective situations, which are not statistically significant at a 5% confidence level. It could be 

speculated that the MAEs would increase with longer lags up to 72 hours, because looking again 

at Kahl (2020), Figure 5c, the MAEs between lags 6 and 24 are approximately the same as they 

are for KMKE, but as the lag time gets longer, the MAEs start to get larger. The present results 
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indicate that at KMKE, lag time does not have a large effect on the GF model for the shorter 06 – 

24 hr lag times.  

What is the effect of different MOS products on the GF model? GFS MOS and NAM MOS 

are compared against each other for all weather types at all lag times considered (Figure 4 a-h). 

The only weather type where NAM MOS outperforms GFS MOS for all lags is windy snow, and 

the largest variation between the two models is the 24 hr lag for windy snow, where NAM MOS 

does quite a bit better than GFS MOS. However, this difference is not statistically significant at a 

5% confidence level.  GFS MOS most commonly performs better for the 06 hr lag for all weather 

types, but beyond that, the performance quality for both models is very similar. Both GFS MOS 

and NAM MOS had difficulties forecasting for the convective types. Kahl (2020) shows in its 

Table 3 that at most of the sites included in that study, the GF model coupled with both GFS MOS 

and NAM MOS showed skill, i.e. statistically significant improvement over climatology, out to a 

lag of 72 hr. 

Does the GF model perform worse during convection because the model itself does not 

perform well or does it not do as well because the wind speed and wind direction forecasts 

produced by the MOS models are not of good quality? Looking at Figure 5, the relationship is 

approximately linear between the gust bias and wind speed bias for the 24 hr lag of GFS MOS 

during both convective weather types. This shows that the GF model’s failure to perform well is 

due, in part, to the GFS MOS’s inability to accurately forecast wind speeds and directions during 

convection. When the wind speed forecast bias is small, between -2 kt and 2 kt for example, the 

peak wind gust bias ranges from -5 kt to 5 kt for both convective weather types.  With larger wind 

speed forecast errors, the peak gust forecast errors are generally much larger. The GFS MOS peak 

gust forecast results for the two convective weather types were also examined for any dependence 



www.manaraa.com

15 
 

on observed wind conditions. Figure 6 a & c do not show any evidence that any observed wind 

speeds produce better gust forecasts. Figure 6 b & d similarly do not show any correlation between 

observed wind directions and better gust forecasts. The relatively poor performance of the GF 

model during the convective weather types thus appears to be due to a combination of inaccuracies 

in wind speed forecasts and, as mentioned earlier in section 4.1, the reduced ability of the 

meteorologically stratified gust factor to characterize gustiness caused by convective phenomena. 

How well does the GF model perform compared to the peak wind gust forecasts provided 

by the LAMP system? For windy snow (Figure 4a), LAMP performs worse than both GFS MOS 

and NAM MOS by a significant amount, especially for the 24 hr lag, but still performs better than 

climatology. Less windy snow shows that LAMP outperforms NAM MOS for the 06 hr lag but 

does worse than both models for the later lags.  

For both convective weather types, LAMP did better than both MOS models for all lags 

except the 18 hr lag, when it has nearly the same performance level as climatology. The 06 hr and 

12 hr lags for convective with thunder and rain performed almost as well as the PProg MAE.  

LAMP performs less well than NAM MOS and GFS MOS at all lags for the rest of the 

weather types (non-convective rain, nighttime conditions, and high pressure), and does worse than 

climatology for lags 12-24 hr for the nighttime weather types and again for lags 18 hr and 24 hr 

for high pressure. There is a general increase in MAEs per lag time for most of the weather types. 

Save for the convective situations, LAMP performs worse than the two MOS models for a majority 

of the weather types and lags. 

The statistical significance testing for GFS MOS versus LAMP shows that GFS MOS 

performs statistically better than LAMP for all lags of windy snow, all lags of nighttime with 

clouds and no precipitation, the 24 hr lag of nighttime with clear skies and no precipitation, and 
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the 18 hr and 24 hr lags of high pressure at a 5% confidence level. Further significance testing 

showed LAMP MAEs to be less than GFS MOS MAEs during less windy snow at the lags of 06 

hr and 12 hr, and differences between GFS MOS and LAMP for the other weather types and lags 

for to be insignificant.    

The mean biases for each weather type and model lag can be found in Table 13. Most of 

the weather types do not have a large specific bias (positive or negative) for all the models and 

lags. Windy snow gusts were largely underpredicted. High pressure and clear nighttime gusts were 

more commonly overpredicted for all the models. Both convective weather type gusts were 

underpredicted for all the model types and lags except for LAMP, which tended to overpredict the 

gusts.  

The climatology results show that the mean bias is negative and generally large for all the 

weather types except for night with clear and dry conditions and for high pressure. The negative 

biases are associated with the weather conditions that produce stronger gusts (Tables 4-9), and the 

weather types with the positive mean bias are associated with weaker gusts (Tables 10-11).  

PProg has mean biases that are close to zero for all weather types except the convective 

ones. This supports the results that the GFs are a good description of the wind speed- and wind 

direction- dependent gust climatology at KMKE, and the GF model provides good quality 

forecasts of peak wind gusts provided that the wind speed and direction forecasts are of high 

quality, except for convection.  

5 Conclusions 

Harris and Kahl (2017) showed that GF models demonstrate skill in estimating peak wind 

gusts and are improved with the use of meteorologically stratified GFs. Kahl (2020) showed that 

the meteorologically stratified GF method is a viable option for the operational prediction of 
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peak wind gusts. In this study, we investigated how well the meteorologically stratified GF 

method coupled with various forecasting models performs for eight gust-producing weather 

conditions. The GF model estimates peak wind gusts by coupling gust factors, which are site-

specific climatological measures of gusts, with wind speed and wind direction forecasts. These 

GFs were determined from one-minute resolution ASOS wind data. NAM MOS and GFS MOS 

wind forecasts were provided at lags ranging from 1-24 hr.  

The PProg forecast MAEs ranged from 1.1 kt to 1.7 kt for the non-convective weather 

types that were analyzed, and up to 4.2 kt during the convective weather types. This confirms 

that the meteorologically stratified GF model has potential when provided with accurate wind 

speed and wind direction forecasts during non-convective weather events. Convective weather 

event peak wind gusts are forecasted more accurately using the LAMP model. The climatology 

forecast MAEs, the benchmark against which model skill is assessed, ranged from 4.8 kt for 

nighttime with clear and dry conditions to 17.6 kt for windy snow.  

The GF model coupled with GFS MOS showed skill over climatology in predicting peak 

gusts for all weather types except convective at all lags analyzed (06 hr, 12 hr, 18 hr, and 24 hr). 

This is important for operational forecasting, because the GF method can be utilized for most 

gust-producing weather phenomenon provided that the site-specific, stratified GFs are available.  

For most weather types and lags, except for windy snow, the GF model coupled with 

GFS MOS and NAM MOS performed approximately equally. When tested for statistical 

significance, the 24 hr lag for windy snow showed that the large difference between NAM MOS 

and GFS MOS was not statistically important.  

The relatively poor performance of the GF model in predicting peak wind gusts during 

the two convective weather types studied appears to be due to a combination of large errors in 
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wind speed forecasts and the inability of the gust factors to properly characterize gustiness 

during the convective conditions studied. 

Predicting peak wind gusts remains a challenge today, despite its importance in 

forecasting the weather. After continued testing, the GF method remains a good option for the 

operational prediction of peak wind gusts for a variety of gusty, non-convective weather types. 

LAMP still provides better gust forecasts for convective situations.  

 Questions remain that were not addressed in this project. How well does the GF model 

perform beyond the 24 hr lag for specific weather types? How well does the GF model perform 

for other weather types not considered in this project that also produce high peak wind gusts? If 

this project were replicated at other sites, would the results be similar? If the results at other sites 

were different, why might this be the case? How well does the GF model perform coupled with 

other MOS products or other products that provide wind speed and wind direction forecasts? 

These questions serve as suggestions for further research on this topic. 
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Table 1 List of locations that responded to email survey (NWS=National Weather Service). Note: 

two replies were received from the Milwaukee NWS office. 
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Table 2 Most Common survey answers 

 
 
 
 
 
 

Table 3 Number of occurrences for each weather type and occurrence frequency of each weather 

type for KMKE during 2010-2017 
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Table 4 Occurrence frequencies and wind/gust characteristics for windy snow.  

 
 
 

Table 5 Occurrence frequencies and wind/gust characteristics for less windy snow. 

 

 

Table 6 Occurrence frequencies and wind/gust characteristics for convective with thunder 
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Table 7 Occurrence frequencies and wind/gust characteristics for convective with thunder and 

rain 

 
 
 

Table 8 Occurrence frequencies and wind/gust characteristics for non-convective rain 

 
 
 

Table 9 Occurrence frequencies and wind/gust characteristics for night, cloudy, dry 
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Table 10 Occurrence frequencies and wind/gust characteristics for night, clear, dry 

 
 

Table 11 Occurrence frequencies and wind/gust characteristics for high pressure 

 

 

Table 12 Models used with details (GFs are doubly-stratified by wind speed and wind direction) 
Model Name Abbreviation Model Type MOS Guidance 

Type 
MOS Guidance 

Product 

Persistence PERS No-skill   

Climatology CLIM No-skill   

Gust Factor – 
NAM 

GFNAM GF model coupled 
with NAM MOS 

NAM Wind speed, wind 
direction 

Gust Factor – GFS GFGFS GF model coupled 
with GFS MOS 

GFS Wind speed, wind 
direction 

Perfect Prog PPROG GF model coupled 
with observed 

wind speed and 
direction 

  

Localized Aviation 
MOS Program 

LAMP MOS guidance LAMP Peak wind gust 
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Table 13 Mean bias (kt) of all models at all lag times for all weather types 
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Figure 1 Gust web showing meteorologically stratified gust factors at KMKE based on 66,823 

hourly wind speeds, wind directions, and peak gusts during 2010-2017. The rings represent 

mean wind speed ranges: 0-5 kt (center), 5-10 kt, 10-15 kt, and >15 kt (outermost). The radial 

lines represent the 30° wind sectors, clockwise from north. The symbols represent the occurrence 

frequencies of mean wind speed and direction combinations. 
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Figure 2 Gust climatology of KMKE for 2010-2017 
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Figure 3 Mean Absolute Errors of peak wind gust forecasts for the persistence, climatology, and 

perfect prognosis models.  
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Figure 4 MAEs for each weather type and model 
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Figure 5 Gust forecast bias versus wind speed forecast bias during convective situations 
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Figure 6 Gust forecast bias at KMKE for both convective situations as a function of observed 

wind speed and observed wind direction. 
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